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The emergence of Cloud Computing technologies brings a new information
infrastructure to users. Providing geoprocessing functions in Cloud Computing
platforms can bring scalable, on-demand, and cost�effective geoprocessing
services to geospatial users. This paper provides a comparative analysis of
geoprocessing in Cloud Computing platforms � Microsoft Windows Azure and
Google App Engine. The analysis compares differences in the data storage,
architecture model, and development environment based on the experience to
develop geoprocessing services in the two Cloud Computing platforms; empha-
sizes the importance of virtualization; recommends applications of hybrid
geoprocessing Clouds, and suggests an interoperable solution on geoprocessing
Cloud services. The comparison allows one to selectively utilize Cloud Comput-
ing platforms or hybrid Cloud pattern, once it is understood that the current
development of geoprocessing Cloud services is restricted to specific Cloud
Computing platforms with certain kinds of technologies. The performance
evaluation is also performed over geoprocessing services deployed in public
Cloud platforms. The tested services are developed using geoprocessing algo-
rithms from different vendors, GeoSurf and Java Topology Suite. The evaluation
results provide a valuable reference on providing elastic and cost-effective
geoprocessing Cloud services.
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1. Introduction

Recent advancement of Cloud Computing technologies has shown great promise for

building spatial data infrastructures (SDIs) or Cyberinfrastructures (Schäffer,

Baranski, and Foerster 2010; Yang et al. 2010). Using Cloud Computing platforms,

typical IT resources such as storages, computing utilities, and databases are available

as services. Providing geoprocessing functions in Could Computing platforms can

bring scalable, on-demand, and cost-effective geoprocessing services to geospatial

users (Baranski, Deelmann, and Schäffer 2010; Gong, Yue, and Zhou 2010; Yang

et al. 2011).

Some public Cloud Computing platforms, such as Microsoft Azure and Google

App Engine (GAE), are already available. Different Cloud platforms have their own

development paradigms. For example, GAE provides a development environment

using Java and Python. Microsoft Azure fully supports.Net environment. In
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addition, applications in the Windows Azure platform differentiate Web roles and

Worker roles, while Google does not. Geoprocessing over different Cloud platforms

needs to be compared for recommendations in geospatial Cloud applications.

The paper provides a comparative analysis of geoprocessing in Cloud Computing

platforms from the following two perspectives. The first one is to compare features of

different Cloud platforms in the development of geoprocessing applications. The

analysis compares differences in the data storage, architecture model, and develop-

ment environment based on the experience to develop geoprocessing services in the
two Cloud Computing platforms � Microsoft Windows Azure and GAE; emphasizes

the importance of virtualization; recommends applications of hybrid geoprocessing

Clouds; and suggests a solution on overcoming heterogeneity in Cloud Computing

platforms to bring interoperable geoprocessing Cloud services.

The second perspective is to compare the performance of geoprocessing

applications in Cloud platforms. This includes performance analyses on different

software packages within the same Cloud environment and one software package

within different Cloud environments. The geoprocessing algorithms from different

vendors, GeoSurf and Java Topology Suite (JTS), are performed and evaluated in

GAE. The goal is to analyze how the same geoprocessing functions developed by

different providers can have different performance and costs in the same Cloud

platform. In addition, the performance of JTS in both GAE and Azure is also

evaluated, which provides a valuable reference for selection of various Cloud

platforms.

The remainder of the paper is organized as follows: Section 2 briefly introduces

the public Cloud Computing platforms, Azure and App Engine, and presents

examples and challenges when migrating legacy geoprocessing functions into Cloud

Computing environments. Related work is described in Section 3. Section 4 presents

a general architecture on integration of geoprocessing functions in Cloud Computing

environments, and Section 5 compares features of the two Cloud platforms,

Microsoft Windows Azure and GAE, in the development of geoprocessing
applications. The performance evaluation of geoprocessing applications in Cloud

platforms is presented in Section 6. Section 7 discusses the results. Conclusions and

pointers to future work are given in Section 8.

2. Running examples

This section briefly describes two well-known public Cloud Computing platforms

(Section 2.1): Microsoft Azure platform, and GAE. Furthermore, it illustrates

challenges when moving legacy geoprocessing applications into Cloud Computing

environments by providing some examples (Section 2.2).

2.1. Microsoft Azure platform and GAE

Microsoft Azure was first announced in 2008. After that, a developer version was

freely available for public tests. The formal version was published at the beginning of

the year 2010. The platform provides a Cloud environment to help developers build,

host, and scale applications through Microsoft data centers. The platform consists of

the following major components (Chappell 2009; Microsoft 2011):
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� Windows Azure: It provides a platform for running Windows applications and

storing their data in the Cloud. Windows Azure runs on a large number of

servers in Microsoft data centers, which are connected into a unified whole by

Windows Azure Fabric. Windows-based compute and storage services for
Cloud applications are built on top of this fabric.

� SQL Azure: It provides services for relational data in the Cloud based on SQL

Server. Although the eventual goal of SQL Azure is to provide a range of data-

oriented capabilities such as data synchronization and reporting, the first SQL

Azure component is SQL Azure Database, which provides a Cloud-based

database management system.

� Windows Azure platform AppFabric: It provides Cloud services for connecting

applications running in the Cloud or on premises. The functions provided by
AppFabric are called Cloud-based infrastructure services, including the Service

Bus and Access Control Service.

GAE was published in 2008. Currently, it can provide services to customers without

charge within the threshold of resources such as central processing unit (CPU) time

and storage. The GAE includes following major components (Sanderson 2009;

Roche and Douglas 2009; Google 2011):

� App Engine runtime environment: The GAE supports applications written in

several programming languages such as Java and Python. The runtime

environment is a ‘sandbox’, which lets the application use only features of

the server that can scale without interfering with other applications. The Java

runtime environments (JREs) allow the developers to build applications using
standard Java technologies, including the Java virtual machine (JVM), Java

servlets, and the Java programming language or any other language using a

JVM-based interpreter or compiler, such as JavaScript or Ruby.

� App Engine datastore: The GAE provides a distributed data storage service

that features a query engine and transactions. The distributed datastore grows

with the data. The App Engine datastore is implemented with BigTable and

Google File System, which are scalable and fault-tolerant.

� App Engine Services: The GAE provides a variety of services that perform
common operations such as URL Fetch, Mail, Memcache, and Image

Manipulation. These services are accessible through application programming

interfaces (APIs).

The components in both Microsoft Azure platform and GAE can be used to address

three aspects of Cloud Computing environments: data environment, application

environment, and infrastructure services (Figure 1). The data environment provides

data storage and access services from Cloud platform vendors, while the application

environment emphasizes the computing services. The infrastructure services offer

utility services in the Cloud information infrastructure. These three aspects are not

addressed by separate components in Cloud platforms. For example, Windows

Azure, as a Cloud application environment, also offers blobs, tables, and queues to

store data. Both Microsoft Azure platform and GAE are still being developed and

tuned. For example, the latest version of Microsoft Azure platform provides

Windows Azure Marketplace, which offers ready-to-purchase applications and
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data. The latest version of GAE also includes the Go runtime environment, which

can be used to develop and deploy Web applications written in the Go programming

language.

2.2. Examples and challenging issues

The spatial analysis functions in professional GIS software packages have been

developed for over decades. However, traditional GIS software systems cannot

support an open analysis environment. The analysis functions can only be used in

their own proprietary environments. Taking a terrain slope computation as an
example, supposing a raster map of the slope can be generated from a raster map for

the Digital Elevation Model (DEM) data, using an analysis algorithm written as a

Java application. This legacy application works only in a JVM. The task is then how

to move this legacy application into different Cloud platforms. The practice can help

Figure 1. A general architecture for geoprocessing in Cloud platforms.
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identify the difference in the development of Cloud applications in different Cloud

platforms, understand the importance of virtualization, and suggest the interoper-

able solution on geoprocessing Cloud services.

Another example is to move geoprocessing algorithms developed by different
providers into Cloud platforms. The geospatial buffer analysis functions from

GeoSurf and JTS are tested for this purpose. GeoSurf is a leading Web GIS software

system in China and has been used in many projects on digital cities in China. It is

developed by the State Key Laboratory of Information Engineering in Surveying,

Mapping and Remote Sensing of Wuhan University (Zhu et al. 2003). The spatial

analysis component in GeoSurf is implemented using Java. JTS provides a complete

and robust implementation of fundamental 2-dimensional spatial algorithms (Vivid

Solutions 2011). The implementation code of JTS is written in Java. It is widely used
as an open source solution in many Java-based GIS projects. The same functional

geoprocessing Cloud services, provided by different Software as a Service (SaaS)

vendors in Cloud platforms, offer the possibility to choose cost-effective services.

The primary challenge in dealing with these examples is that conventional spatial

analysis applications need to be adapted to running environments in Cloud

Computing environments. In particular, how components in Microsoft Azure

platform and GAE can be used to support functional requirements in geoprocessing

service developments, such as enabling geospatial data management functions (i.e.
file inputs/outputs) of legacy applications in Cloud platforms and exposing

conventional spatial analysis algorithms as services in a Cloud architecture?

The second challenge is about interoperable service interfaces that geospatial

applications interact with Cloud services. Geospatial data are collected by diverse

means and are highly complex and heterogeneous. Often, the temporal and spatial

coverage, resolution, origin, format, and map projections are incompatible. Because

of the multidisciplinary nature of Earth science modeling and applications,

geoprocessing functions involved are always diverse. Interoperability issue, therefore,
is important in a distributed environment. One possible solution is to promote the

use of the Open Geospatial Consortium (OGC) standards, which allow the seamless

access to geospatial data and geoprocessing functions in a distributed environment,

regardless of heterogeneity of involved geospatial data and geoprocessing platforms.

3. Related work

Geoprocessing functions are important for discovering hidden and useful geospatial
information and are widely used in Earth science modeling and applications. The

growth of the Web has resulted in the Web-based sharing of large volumes of

distributed geospatial data and computational resources. Geoprocessing is a core

component in Geospatial Cyberinfrastructure (Yang et al. 2010), which must support

geospatial data processing within and across scientific domains. Cloud Computing is

associated with a new paradigm to provide a computing infrastructure (Vaquero

et al. 2009), which can support geoprocessing over the Web (Yue et al. 2010). Several

new aspects of the information infrastructure enabled by Cloud Computing are the
illusion of infinite computing resources available on demand, the elimination of an

up-front commitment by Cloud users, and the ability to pay for use of computing

resources on a short-term basis as needed (Armbrust et al. 2009). A Cloud could be

public or private, depending on the deployment approaches. The public Cloud is
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available to the public, while the private Cloud is used inside an organization.

According to the type of provided capabilities, major categories of Cloud Computing

include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and SaaS

(NIST 2009). Microsoft Azure and GAE are examples of PaaS. A known example of

IaaS is Amazon’s Elastic Compute Cloud (EC2), which allows consumers to manage

virtual machines (VMs).

Several efforts on using Cloud Computing in geospatial applications have been

reported (Table 1). Baranski, Schaeffer, and Redweik (2009) create a Cloud service

for the spatial buffer analysis in GAE and conduct a stress test for scalability

evaluation. The interface of the service follows the Web Processing Service (WPS)

Table 1. Typical cases on geospatial Cloud Computing.

Geospatial Cloud

Geospatial

application

Programming

language

Service

interface

Types

of

Cloud

Cloud

platform

52 North

geoprocessing

Cloud (Baranski

et al. 2009)

Buffer analysis by

JTS

Java OGC WPS Public Google

App

Engine

Spatial data Cloud

(Wang et al.

2009)

Spatial data

indexing and

management

Java OGC WKB/

WKT

Public Google

App

Engine

Payment model in

geoprocessing

Cloud (Baranski

et al. 2010)

Pay-per-use

revenue model for

geoprocessing

services

Java OGC WPS/

OASIS

XACML

Public Amazon

EC2

Cloud-enabled

geoprocessing

(Gong et al.

2010)

Terrain slope

computation

Java/C# OGC WPS Public Microsoft

Azure

FGDC GeoCloud

(Huang et al.

2010)

GEOSS

Clearinghouse

Java OGC

Catalogue

Service for

the Web

(CSW)

Public Amazon

EC2

Cloud-enabled

SDI (Schäffer et

al. 2010)

Buffer and

intersection

analysis by JTS

Java OGC WPS Public Amazon

EC2

Cloud-enabled

WMS (Blower

2010)

Web Map Service Java OGC WMS Public Google

App

Engine

QoS in

geoprocessing

Cloud (Baranski

et al. 2011)

Coordinate

transformation

Java OGC WPS Hybrid

Cloud

Private

Cloud/

Amazon

EC2

FGDC, US Federal Geographic Data Committee; GEOSS, Global Earth Observation System of Systems;
JTS, Java Topology Suite; OASIS, Organization for the Advancement of Structured Information
Standards; OGC, Open Geospatial Consortium; QoS, Quality of Service; SDI, Spatial Data
Infrastructures; WKB, well-known binary; WKT, well-known text; WMS, Web Map Service; WPS, the
Web Processing Service; XACML, eXtensible Access Control Markup Language.
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specification, and the implementation is based on the Java-implemented 52 North

open source WPS software. A pay-per-use revenue model for geoprocessing services

in the Cloud is further proposed and implemented in the Amazon EC2 platform

(Baranski et al. 2010). The model is based on a common policy-based eXtensible

Access Control Markup Language (XACML) security architecture. The XACML is

a standard defined by the Organization for the Advancement of Structured

Information Standards. Y. Wang, S. Wang, and Zhou (2009) use OGC well-known

binary and well-known text (WKT) for data exchange in the Cloud Computing

environment, and demonstrate how spatial indexes can be created in the GAE. In the

GeoCloud Sandbox Initiative of the US Federal Geographic Data Committee,

Huang et al. (2010) deploy and test the metadata catalog service in the Amazon EC2

platform to support the Global Earth Observation System of Systems Clearinghouse.

Ludwig and Coetzee (2010) provide a conceptual comparison among several PaaS

Cloud Computing solutions including Microsoft Azure and GAE from the aspect of

the Cloud security and discuss its implications for geoprocessing services. Schäffer

et al. (2010) discuss Cloud-enabled SDIs. The Amazon Web Services, together with

an OGC WPS implementation hosting the buffer and intersection processes, are used

in a use case for the public risk management. Blower (2010) provides an

implementation of OGC Web Map Service in the GAE. Baranski et al. (2011)

propose a hybrid Cloud architecture by composing private Cloud and computational

resources of public Cloud. In this architecture, resources of external providers can be

requested and integrated on demand into the local infrastructure to match Quality of

Service requirements.

Table 1 lists cases of geospatial Cloud applications from a perspective of

development. The concept of Cloud Computing has spread widely in the past several

years. Some well-known Cloud Computing platforms are already in place. The

community, especially the geospatial community, now needs some implementation

cases to guide practices and real applications and validate and support the

conceptual analysis. Several typical cases with prototype implementations are

compared in Table 1. Most implementations are in the public Cloud platforms.

The geospatial services in Clouds always try to follow the OGC service standards. In

addition, the programming language used for development in these implementations

is usually Java due to its platform-independent feature. The advantage of this feature

is the ability to move easily from one computer system to another, which is crucial in

distributed environments.

Gong et al. (2010) present an architecture and implementation for a terrain slope

computation service in the Microsoft Azure platform. It uses the blob to store

the binary image data, implements the slope computation algorithm in a Worker role

application, develops a WPS interface for a Web role application, and communicates

messages between Web and Worker roles using a queue service. However, as shown

by most cases in Table 1, there is no implementation comparison between different

Cloud platforms. The previous work is extended by choosing another Cloud

platform for development, i.e. implementing the same slope computation service

using the GAE. Furthermore, to the best of our knowledge, there is no comparison

on services with the same function (e.g. the buffer services by GeoSurf and JTS in

this work) in one Cloud platform or different Cloud platforms. The practice on

moving the legacy software to the Cloud platform can provide an informed
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understanding of the work involved in the migration. The performance evaluation

can also help us select cost-effective geoprocessing services.

4. A general architecture for integration of geoprocessing functions in Clouds

By analyzing existing components in Microsoft Azure platform and GAE, we

propose that the integration of geoprocessing functions and Cloud platforms takes

place at three points, in order to address challenges in Section 2.2. Figure 1 shows a

proposed architecture of the integrated system.

The first point is to move computational applications into the application

environment of Cloud platforms. Conventional analysis applications work in their

own standalone environments. The applications in Cloud platforms can scale to
distributed servers. The Windows Azure platform differentiates Web roles and

Worker roles. An application with a Web role is a Web application supported by

Internet Information Services (IIS). An application with a Worker role is used for the

generic development of applications in the Cloud and can perform background

processing for a Web role. Both Web and Worker role applications can have multiple

instances on Windows Azure, each running in its own Windows VM. The VMs are

maintained by Windows Azure and allow role applications to access resources in

data servers managed by Windows Azure Fabric via Windows Azure API. The GAE
provides application servers, which are responsible for distributing requests and

starting up instances. The application code executes in a runtime environment, which

provides access to system resources such as CPU and memory. For example, in the

JRE, the App Engine Java Software Development Kit (SDK) supports the

application development using Java standard APIs. One advantage of using Cloud

Computing platforms for providing geoprocessing services is that instances of

applications are running as needed to maximize the throughput. And another

advantage is that existing Cloud platforms provide built-in load balancing to Web
applications when multiple instances of the same application are running.

The integration of geospatial analysis functions with Windows Azure can use

both Worker role and Web role applications. For example, Worker role applications

can be developed for running geoprocessing algorithms, and Web role applications

can implement Web service interfaces for geoprocessing services. The development of

Worker and Web role applications uses the Windows Azure API. The development of

geoprocessing functions in the GAE is to make traditional application code,

including the Web interface and geoprocessing algorithms, executable in the Cloud
runtime environment. The service interface for geoprocessing services in different

Cloud platforms can adopt the OGC WPS standard. OGC WPS specifies a standard

interface and protocol for discovering and executing distributed geoprocessing

processes (Schut 2007). The use of the standard interface makes these Cloud services

interoperable.

The second point is to manage the application data using storage services from

the data environment of Cloud platforms. The storage service in Microsoft Azure

offers several ways including blobs, tables, and queues to store data. The blobs store
binary or text data. The queues store messages for communication between

components of Windows Azure applications such as the communication between

Web role instances and Worker role instances. The tables provide a structured way to

store non-relational data. For the relational data, the Microsoft SQL Azure extends

8 P. Yue et al.
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SQL Server capabilities to the Cloud and offers a relational database service. The

App Engine datastore provides distribution, replication, and load-balancing services

for storage. Geospatial data that are required for geoprocessing, therefore, can be

stored in both Cloud platforms using robust storage services.
The third point is to connect Cloud-based services and legacy geoprocessing

applications using infrastructure services. For example, the Service Bus component in

the AppFabric provides a facility for identifying service endpoints, publishing them,

routing messages among them, and connecting them despite common Internet

connectivity challenges such as translations between external and internal network

addresses. The URL Fetch service in the GAE allows applications to access resources

on the Internet, such as Web services or other data. The service retrieves Web

resources using the same high-speed Google infrastructure that retrieves Web pages
for many other Google products. These Cloud-based infrastructure services can be

connected in distributed applications, whether in a standalone environment or in the

Cloud, thus generating a hybrid Cloud. Here the hybrid means that Cloud services

can be connected with legacy services to support Cloud applications. Legacy

geoprocessing applications, therefore, can be reused by exposing itself via the Service

Bus.

5. Implementation comparison

The Windows Azure Tools for Microsoft Visual Studio 1.2 (June 2010 version) are

used to develop geoprocessing services in Windows Azure. The tools are combined

with Visual Studio 2010, SQL Server 2005 Express, and IIS 7.0 to provide a
Windows Azure development environment including development fabric and storage

utilities, which can simulate Windows Azure compute and storage services in desktop

machines. Thus the tools allow the creation, building, debugging, and running of

Cloud applications in a simulated Windows Azure environment. Once these services

pass tests in the development environment and are ready to be used by public, they

can be packaged and deployed on Windows Azure by using utilities in the tools.

Geoprocessing Cloud services including terrain slope computation and buffer

analysis in the GAE are developed using the App Engine Java SDK). The SDK
includes software for a Web server, which simulates the App Engine environment for

running and testing Java applications. The Java 6 VM is supported in the App Engine

and used for compiling applications. The applications can be published freely in

the GAE under certain quotas and limits, such as up to 1 GB of storage and up to

five million page views a month (Google 2011). Three geoprocessing services are

published in the GAE and available to the public.

The comparison is provided as follows, using the examples in Section 2.2 as

illustrations.

5.1. Creating the application framework

The Windows Azure Tools for Microsoft Visual Studio provides a project template
for developing a Cloud service. Using this template, a Cloud service solution for the

terrain slope computation can be generated. The solution includes three projects: a

Cloud service project, a Work role project, and a Web role project. The Work and

Web role projects are intended for development of the background geoprocessing

International Journal of Digital Earth 9
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and Web service interface. The Cloud service project in the solution includes files for

the service definition and service configuration. The service definition file specifies

roles in a service and optional local storage resources. The service configuration file

specifies the number of role instances to be deployed for each role in the service and
other values of configuration settings.

The Google Plugin for Eclipse provides an easy way to develop, test, and upload

App Engine applications. A Web application project for Cloud services can be

created by checking the option of using GAE. The project uses the Web Application

Archive standard layout and the Java Servlet for interacting with the Web server

environment. The environment is similar to the conventional development of Java

Web applications. Additional configurations specific to Google Cloud services are

required. For example, the configuration file, named appengine-web.xml, specifies
the app’s application ID registered in GAE.

5.2. Developing WPS interface

According to the WPS specification, the WPS interface includes three operations:

GetCapabilities, DescribeProcess, and Execute. The GetCapabilities operation allows

a client to request and receive a service capabilities document that describes

operations and processes of a specific WPS implementation. The DescribeProcess

operation allows a client to get detailed information, such as input and output

parameter types, about specific processes. The Execute operation allows the client to

run a specific process in a WPS server (Schut 2007). These operations can be invoked
via the HTTP (Hypertext Transfer Protocol) GET method with a key value pair

(KVP) encoded request or the HTTP POST method with an Extensible Markup

Language (XML) based encoding. The following examples show the implementation

of the KVP encoded DescribeProcess requests for retrieving the process description

of the terrain slope computation in the Windows Azure and GAE respectively:

Window Azure:

http://127.0.0.1:81/wps.aspx?Request�DescribeProcess&Service�WPS&Version�
0.4.0&Identifier�DEM2SlopeProcess

GAE:

http://dem2slope.appspot.com/SlopeCloud?Request�DescribeProcess&Service�
WPS&Version�0.4.0&Identifier�DEM2SlopeProcess

The two requests are same except the server address. The interoperability can be

achieved when using the standard interface. One example on execution using HTTP

GET in a Web browser is shown in Figure 2. The data on sides of the Web browser

are input DEM and output terrain slope.

5.3. Providing the storage of application data

In Microsoft Azure, the Blob service is used for the robust data storage. Figure 3
shows the sequence diagram of processing a WPS Execution request in Azure. In the

blob service, blobs are organized into a container beneath a storage account.

Geospatial data can be available as either a Web URL to a data product or an URI

to the address of a blob. In the former case, the data need to be downloaded and

stored into blobs. In the latter one, the blob can be accessed directly in the same

10 P. Yue et al.
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Figure 2. WPS Execution request using the HTTP GET method.
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storage account. The Queue service is used to store communication messages

between Web and Worker roles. When an Execution request comes, the container and

queue are created if they do not already exist. The data in the WPS request is loaded

into blobs of the container. The path to the blob is recorded in a message and added

into the queue.

The Worker role detects the message in the queue and processes it using domain

business logics, including extracting the path to the blob from the message, accessing

data in the blob, invoking the geoprocessing process, uploading the processing result

into a blob belonging to a new container, and deleting the old message. The Windows

Azure Tools provide the Windows Azure Storage Explorer to view read-only blob

and table data.

Applications in GAE can still use the structure in conventional Java Web

applications. As shown in Figure 4, the message processing still follows the standard

Servlet process. The data storage, however, needs to use the Cloud storage services of

Google. Conventional file creation and I/O stream operations require revisiting since

they might not work in the Cloud storage environment. The implementation here

adopts the GAE Virtual File System (GaeVFS 2011). GaeVFS provides a portability

layer that allows users to write application code to access the file system. The

functions include creation of folder and files and related read and write functions.

GaeVFS is implemented using the GAE datastore and Memcache APIs. The

advantage of using GaeVFS is that it simplifies the use of Google datastore. In

addition, the code can run unmodified in either GAE or non-GAE servlet

environments.

Although the application data for cases in the paper can be managed successfully

by GAE and Azure, the management of huge volumes of geospatial data in the

Cloud environments needs more investigations. For example, how can traditional

Figure 3. Workflow on using storage services in Web and Worker roles.

12 P. Yue et al.

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
e 

M
as

on
 U

ni
ve

rs
ity

],
 [

Pe
ng

 Y
ue

] 
at

 1
3:

57
 1

0 
D

ec
em

be
r 

20
12

 



spatial indexes and queries be supported in Cloud environments? Can the

MapReduce programming model or BigTable be leveraged with the spatial data

management? These are outside the scope of this paper. For some existing

approaches on how to manage massive amounts of geospatial data in Cloud

environments, please refer to Gonzalez et al. (2010) and Cary et al. (2010).

5.4. Implementing geoprocessing algorithms

It usually requires the rewriting, compiling, or building computer source code, when

migrating legacy geoprocessing programs into Cloud Computing platforms. Marx
(2009), a developer of Microsoft Windows Azure, suggests an approach to run Java

applications in Windows Azure by taking advantage of VMs in Windows Azure. A

JRE is packed with a Java application and deployed into a VM in the Windows

Azure. The latest version of Microsoft Azure platform now starts to provide a

Windows Azure SDK for Java, which also packs together the JRE and Java project

for each application. Thus Java code for the slope computation does not need to be

modified and can work in Windows Azure.

In GAE, the JRE already includes the Java Standard Edition Runtime
Environment (JRE) 6 platform and libraries. However, it provides limited access to

JRE classes (the JRE Class White List) due to the restrictions of the sandbox. The

source code of conventional geoprocessing algorithms have to be tested and modified

to follow the restrictions. For a heavy-weight geoprocessing package such as that in

GeoSurf, it requires considerable efforts, since GeoSurf is the Web GIS software

including many Java libraries that are not related to geoprocessing. It is better to peel

off these unrelated libraries before the migration. On the other hand, the source code

for the slope computation case and JTS focus on geoprocessing algorithms and can
be considered as light weight. The slope and buffer (GeoSurf and JTS) services are

available at http://geopw.whu.edu.cn/ws/quickstart.html. They use the same servlet

framework for supporting the WPS interface. As shown in Figure 5, the HTML page

provides a data upload function. The test data is the Yangtze River in China, which

Figure 4. Workflow on using storage services in Google App Engine.
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Figure 5. User interface for geoprocessing Cloud services in Google.
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consists of 223 vector points. After a user uploads the data, the page is directed to an

execution page, where a HTML form is used to post the execution request.

6. Performance evaluation

To evaluate the performance of the Cloud services, we have conducted two

experiments. One is to execute buffer services from both GeoSurf and JTS 20 times

using the same input data and the other one is to invoke these services using input

data with increased size. The resource usage for each execution can be collected from

the monitoring dashboard of GAE.

Figure 6 shows the performance tests of GeoSurf and JTS services in 20

executions. The following indexes are used when monitoring the executions:

cpu_ms: It reports the usage of CPU to fulfill the request by using the adjusted

time in milliseconds as a reference measurement. It includes the time spent by the

Google API usage.

cpm_usd: An estimate of the cost (in USD) of 1000 similar requests.

The values of these indexes are monitored in the dashboard of GAE and can be

recorded for each execution. Since the input data for both GeoSurf and JTS services

are same, the usage of storage resources for both services in the dashboard is same

and therefore is not compared here.

In Figure 6, the execution time is fluctuating for each execution of the same

service using the same input data. This is due to the changing status of the network

and hosting servers. It can be observed that the cpu_ms of JTS service is usually

higher than GeoSurf. This means that the performance of buffer analysis in GeoSurf

is better than that in JTS. The higher the cpu_ms, the more users will pay. Figure 7

shows that the value of cpm_usd in using the JTS service is higher than that in

GeoSurf.

To analyze the effect of data size on the performance of Cloud services, the input

vector data are divided into 10 groups, where most of them include 22 vector points,

Figure 6. Performance tests of GeoSurf and Java Topology Suite services (20 executions).
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with the final group including 25 vector points. The input data are increased from 1

to 10 groups. To decrease the network effect on the index values, 10 executions are

conducted at each data size, and the average value is recorded. A new index �
api_cpu_ms � is added, which records the CPU time spent by the Google API usage.

Since both GeoSurf and JTS services use the same GAE API, the values of

api_cpu_ms are the same. As shown in Figure 8, the performance of the GeoSurf

service is still better than JTS as the size of data increases, since the cpu_ms for the

JTS service is higher than that of the GeoSurf service. In addition, when the size of

data increases from six groups (the actual size is 6224 bytes) to seven groups (the

actual size is 7192 bytes), the api_cpu_ms increases from 4037 to 4357 ms, while it is

stable before and after. It means that the CPU time spent for processing is stable in a

certain range, yet can be scaled on demand. Figure 9 demonstrates that the cost of

the JTS service is still higher than the GeoSurf service as the size of data increases.

The cost increase sharply when the data size is changed from six to eight. This is due

to the increase of api_cpu_ms. The experimental results show that Cloud Computing

can provide on-demand allocation of computing resources to support geoprocessing

Figure 7. Costs of GeoSurf and Java Topology Suite services (20 executions).

Figure 8. Performance tests of GeoSurf and Java Topology Suite services (different sizes).
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services. The measurability of the Cloud Computing also allows the economic

selection of geoprocessing services.

Another experiment is to test the performance of JTS in both GAE and Azure.

The JTS is deployed into Azure, and its performance is compared with the JTS in

GAE. Figure 10 shows the performance tests of buffer services in GAE and Azure in

20 executions using the same data. Azure has geolocation-specific support, which for

example allows selection of geographical regions of Microsoft data centers for

hosting JTS services. Tests on JTS services in Azure in East United States and Azure

in East Asia are performed and shown in Figure 10. Execution times are collected by

services themselves instead of clients and recorded in response messages of WPS.

Thus communication costs between services and clients are not included in execution

times.

Figure 10 shows that the performance of JTS services in either GAE or Azure is

stable. However, performance difference exists among GAE, Azure in East United

States, and Azure in East Asia. The JTS service in Azure (East Asia) has the best

performance, followed by GAE and Azure (East United States). Figure 11 shows the

Figure 9. Costs of GeoSurf and Java Topology Suite services (different sizes).

Figure 10. Performance tests of Java Topology Suite services in Google App Engine and

Azure (20 executions).
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performance tests of JTS services in GAE and Azure using input data with increased

size. Ten executions are conducted at each data size, and the average value is

recorded. The JTS service in Azure (East Asia) still has the best performance,

followed by GAE and Azure (East United States). The execution time increases when

the size of input data increases. The execution time of the JTS service in Azure

(United States) increases more quickly than others. The better the performance, the

slower the increase will be. Since the performance results could be affected by the

working load of Cloud centers, it cannot be concluded which platform or data center

has the best performance from this single case. However, the experiment shows that

the selection of a platform or a specific data center provides potential for improving

performance.

7. Discussion

The key feature of the Cloud Computing technology is that it hides the underlying

complexity of using IT resources, while at the same time bring the scalable, reliable,

sustainable, ready-to-use, on-demand, and cost-effective IT services to the general

public. There are already various public Cloud platforms in the general information

domain. They provide a firm technical base for on-demand provision of sufficient

resources for both data-intensive and computing-intensive geoprocessing applica-

tions. For example, when the data size increased in the buffer analysis, the

computational power can be allocated and scaled automatically (NIST 2009;

Armbrust et al. 2009). Users no longer need to manage their own IT infrastructure.

Applications and data run on platforms operated by third parties. Such provision has

its business values by providing flexible costs. The resources usage is monitored and

cost could be measurable and economic. As demonstrated in the buffer analysis, the

cost for using the JTS service is higher than GeoSurf. When large volumes of data are

involved in the geoprocessing or if the geoprocessing algorithm is complex and time-

consuming, the usage cost is an important concern for practical geoprocessing

applications.

Figure 11. Performance tests of Java Topology Suite services in Google App Engine and

Azure (different sizes).
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The APIs of Cloud platforms are designed to hide as much as possible the

complexity of managing resources in the infrastructure. The comparison between

Microsoft Azure and GAE in developing and implementing geoprocessing Cloud

services suggests that virtualization is the key issue for migrating legacy geoproces-
sing applications into the Cloud Computing environment. The migration requires the

investigation of the Cloud component architecture, running environment, program-

ming language, application framework, storage service, and platform APIs. The

virtualization could happen at all these aspects. In the infrastructure level, the

Amazon EC2 provides the virtualization at the system kernel level. For example,

the Amazon EC2 provides VMs such as Linux Amazon Machine Images, which

allow users to control nearly the entire software stack. Users can work in a shell

environment. They will install all related software including the servlet container like
the Tomcat when developing services (Huang et al. 2010). Although this gives users

more control on the application environment, the cost will also increase for using

dependent software systems such as Tomcat. In the platform level, Microsoft Azure

and GAE try to provide the higher virtualization at the language (common language

runtime) and Web application level, respectively (Armbrust et al. 2009). There is no

consensus yet on the virtualization level. As a result, the comparison shows

considerable work such as rewriting the file I/O functions has to be conducted on

adapting conventional geoprocessing applications to Cloud environments. The
implementation of geoprocessing Cloud services is locked into a specific vendor

platform. The virtualization of file systems such as the virtual file system provided by

the GaeVFS shows promise to ensure applications portable to other hosting vendors.

The vendor-specific APIs complicate the development of geoprocessing services

in different Cloud Computing platform. Although the Cloud Computing interoper-

ability is an open issue (Ortiz Jr 2011), the OGC service standards provide an

interoperable solution in the geospatial domain for finding and accessing data and

geoprocessing services. In fact, as shown in Table 1, most cases advocate the use of
OGC standards for accessing geospatial Cloud services. The standard interfaces

enable the interoperation of services, so that services developed by different vendors

can be combined to fulfill users’ requests. The interoperable services can be

published, discovered, and executed. They can also be chained together for

collaborative scientific problem solving. The standard-compliant geospatial Cloud

services, legacy geoprocessing services, and infrastructure services can be connected

together to support hybrid Cloud applications. This appears to be practical when

new geospatial applications try to provide solutions on combining legacy systems
and Cloud Computing resources, since the entire migration might require intensive

work and it is only worth the effort when the advantages of Cloud Computing really

count in applications.

8. Conclusions and future work

This paper provides a comparative analysis of the design and implementation of

geoprocessing services in two Cloud Computing platforms � Microsoft Azure and
GAE. A general architecture on how various components in Microsoft Azure

platform and GAE can be used to address storage and computing demands of

geoprocessing services are presented. The work compares the difference in the

running environment, programming language, application framework, storage
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service, and platform APIs for both Cloud platforms based on the practice in

supporting geoprocessing functions. Geoprocessing functions from legacy GIS

software including GeoSurf and JTS are migrated into Cloud platforms and

compared in performance.

The prototype implementation illustrates how conventional geoprocessing

functions can be migrated into the Cloud Computing environment. The comparison

provides the reference on selectively utilizing Cloud Computing platforms or hybrid

Cloud pattern. The Cloud services help geoprocessing applications enjoy benefits of

the new IT infrastructure including the load balancing, data replication, and

resource management. The practices show that virtualization is the key problem for

portable geoprocessing Cloud services. The standard interfaces for Cloud-based

geoprocessing services ensure wide applications of these services in geospatial

communities. The performance tests demonstrate how the Cloud Computing can

support the on-demand geoprocessing and economic choice of geoprocessing

services.

Future work includes the practice on migration of more types of geoprocessing

services into the Cloud platforms. Such practices can help further validate and

support the analysis and provide more insight on the working mechanism of

geoprocessing Cloud services. For example, over 100 geoprocessing services have

been developed in GeoPW (Yue et al. 2010). Porting all these services into the Cloud

environment can help provide a reliable and scalable environment for scientific

problem solving. Furthermore, we will consider how different geoprocessing services

in the Cloud environment can work together for better performance of geoprocessing

service chaining.
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